lunes, 6 de diciembre de 2010

1.3


A)    ELABORACIÓN DEL PROYECTO DE INSTALACIÓN DE UNA RED DE DATOS
   DETENCIÓN  DE NECESIDADES Y RECURSOS.
Detención
En matemáticas, computación y teoría de la información, la detección y corrección de errores es una importante práctica para el mantenimiento e integridad de los datos a través de canales ruidosos y medios de almacenamiento poco confiables. Para la comunicación entre varias computadoras produce continuamente un movimiento de datos, generalmente por canales no diseñados para este propósito (línea telefónica), y que introducen un ruido externo que produce errores en la transmisión.
Necesidades
La mayoría de las personas que acceden a internet prefieren hacerlo a través de una conexión de banda ancha por la velocidad de navegación cada acceso tiene ventajas y desventajas frente al otro, y todo depende de las necesidades y posibilidades económicas del usuario. Pero hasta el momento, coinciden, las redes fijas, como las que ofrecen las telefónicas o los operadores de cable, siempre darán más ancho de banda que las móviles.
Recursos
Sin duda la red esta llena de todo tipo de recursos y servicios, podemos encontrar de todo y para todos, nosotros consideramos que la WWW es la mayor fuente de información del Mundo donde personas particulares, empresas, agrupaciones etc. nos muestran infinidad de información de todo tipo. Podemos emplearla de buen provecho y sacarle partido a cualquier cosa que se nos pase por la mente, todo es cuestión de buscar, comparar y seleccionar.
   Determinación  de medios fiscos  de la instalación.
El medio físico viene a ser básicamente el "cable" que permite la comunicación y transmisión de datos, y que define la transmisión de bits a través de un canal. Esto quiere decir que debemos asegurarnos que cuando un punto de la comunicación envía un bit 1, este se reciba Como un bit 1, no como un bit 0. Para conectar físicamente una red se utilizan diferentes medios de transmisión.
Armarios:
El rendimiento de una infraestructura de TI depende de la interacción entre los diferentes componentes. Con los racks para servidores Retal RimatriX5 Ud. dispone de una plataforma de sistema en la que las soluciones de climatización, suministro eléctrico y seguridad están perfectamente armonizadas entre sí y el espacio disponible está optimizado. El rendimiento por rack TI se ve considerablemente incrementado y los costes fijos descienden de forma duradera
Canaletas:
Las canaletas son tubos metálicos o plásticos que  conectados de forma correcta proporciona al cable una segunda pantalla o protección. También las canaletas es el medio por el cual los cables de red son llevados y protegidos, de acuerdo a su trayectoria   se trabajan bastante con canaletas de pared y de piso. Es recomendable usar con los accesorios del caso en bordes y subidas, para evitar el deterioro del cable y dar los giros normados.
Roseta:
Permita conectar el dispositivo o dispositivos que se quieran integrar en la red. El área de trabajo comprende todo lo que se conecta a partir de la roseta de conexión hasta los propios dispositivos a conectar (ordenadores e impresoras fundamentalmente). Están también incluidos cualquier filtro, adaptador, etc. , que se necesite. Éstos irán siempre conectados en el exterior de la roseta. Si el cable se utiliza para compartir voz, datos u otros servicios, cada uno de ellos deberá de tener un conector diferente en la propia roseta de conexión. Al cable que va desde la roseta hasta el dispositivo a conectar se le llama latiguillo y no puede superar los 3 metros de longitud.

AQUÍ VA TE PARTE GIOVIZ..
ANEXALA AQUÍ PORFIZ
















·         DETERMINACIÓN DE DISPOSITIVOS PARA LA CONECTIVIDAD
o   Repetidores: Cuando las señales viajan a través de un cable, se degradan y se distorsionan en un proceso denominado «atenuación». Si un cable es bastante largo, la atenuación provocará finalmente que una señal sea prácticamente irreconocible. La instalación de un repetidor permite a las señales viajar sobre distancias más largas. Un repetidor funciona en el nivel físico del modelo de referencia OSI para regenerar las señales de la red y reenviarla a otros segmentos.
El repetidor toma una señal débil de un segmento, la regenera y la pasa al siguiente segmento. Para pasar los datos de un segmento a otro a través del repetidor, deben ser idénticos en cada segmento los paquetes y los protocolos Control lógico de enlace (LLC; Logical Link Control). Un repetidor no activará la comunicación, por ejemplo, entre una LAN (Ethernet) 802.3 y una LAN (Token Ring) 802.5.


Los repetidores no traducen o filtran señales. Un repetidor funciona cuando los segmentos que unen el repetidor utilizan el mismo método de acceso. Un repetidor no puede conectar un segmento que utiliza CSMA/CD con un segmento que utiliza el método de acceso por paso de testigo. Es decir, un repetidor no puede traducir un paquete Ethernet en un paquete Token Ring.
Los repetidores pueden desplazar paquetes de un tipo de medio físico a otro. Pueden coger un paquete Ethernet que llega de un segmento con cable coaxial fino y pasarlo a un segmento de fibra óptica. Por tanto, el repetidor es capaz de aceptar las conexiones físicas.
Los repetidores constituyen la forma más barata de extender una red. Cuando se hace necesario extender la red más allá de su distancia o limitaciones relativas a los nodos, la posibilidad de utilizar un repetidor para enlazar segmentos es la mejor configuración, siempre y cuando los segmentos no generen mucho tráfico ni limiten los costes.
Ni aislamiento ni filtrado. Los repetidores envían cada bit de datos de un segmento de cable a otro, incluso cuando los datos forman paquetes mal configurados o paquetes no destinados a utilizarse en la red. Esto significa que la presencia de un problema en un segmento puede romper el resto de los segmentos. Los repetidores no actúan como filtros para restringir el flujo del tráfico problemático.
Además, los repetidores pasarán una «tormenta» de difusión de un segmento al siguiente, y así a través de toda la red. Una «tormenta» de difusión se produce cuando el número de mensajes de difusión que aparece en la red es superior al límite del ancho de banda de la red. El rendimiento de la red va a disminuir cuando un dispositivo está respondiendo a un paquete que está continuamente circulando por la red o a un paquete que está continuamente intentando contactar con un sistema que nunca responde.
Implementación de un repetidor. Los pasos a considerar cuando se decide implementar repetidores en la red son:
·         Conectar dos segmentos de medio similar o no similar.
·         Regenerar la señal para incrementar la distancia transmitida.
·         Pasar todo el tráfico en ambas direcciones.
·         Conectar dos segmentos de la forma más efectiva en cuanto al coste.
Los repetidores mejoran el rendimiento dividiendo la red en segmentos y, por tanto, reduciendo el número de equipos por segmento. Cuando se utilizan repetidores para extender la red, no olvide la regla 5-4-3.
No utilice un repetidor cuando:
·         Existe un tráfico de red altísimo. 
·         Los segmentos están utilizando diferentes métodos de acceso.
·         Es necesario el filtrado de datos.
o   Hub: Es el componente hardware central de una topología en estrella. Además, los hubs se pueden utilizar para extender el tamaño de una LAN. Aunque la utilización de un hub no implica convertir una LAN en una WAN, la conexión o incorporación de hubs a una LAN puede incrementar, de forma positiva, el número de estaciones. Este método de expansión de una LAN es bastante popular, pero supone muchas limitaciones de diseño. 
Es importante tener cuidado cuando se conectan los hubs. Los cables de paso se conectan de forma diferente que los cables estándares de enlace. Compruebe con los fabricantes si se necesita un cable de enlace estándar o un cable de paso.
o   Switch: es un dispositivo digital de lógica de interconexión de redes de computadores que opera en la capa 2 (nivel de enlace de datos) del modelo OSI. Su función es interconectar dos o más segmentos de red, de manera similar a los puentes (bridges), pasando datos de un segmento a otro de acuerdo con la dirección MAC de destino de las tramas en la red.

Un conmutador en el centro de una red en estrella.
Los conmutadores se utilizan cuando se desea conectar múltiples redes, fusionándolas en una sola. Al igual que los puentes, dado que funcionan como un filtro en la red, mejoran el rendimiento y la seguridad de las LANs (Local Area Network- Red de Área Local).
Atendiendo al método de direccionamiento de las tramas utilizadas:
ü  Store-and-Forward: Los switches Store-and-Forward guardan cada trama en un buffer antes del intercambio de información hacia el puerto de salida. Mientras la trama está en el buffer, el switch calcula el CRC y mide el tamaño de la misma. Si el CRC falla, o el tamaño es muy pequeño o muy grande (un cuadro Ethernet tiene entre 64 bytes y 1518 bytes) la trama es descartada. Si todo se encuentra en orden es encaminada hacia el puerto de salida.Este método asegura operaciones sin error y aumenta la confianza de la red. Pero el tiempo utilizado para guardar y chequear cada trama añade un tiempo de demora importante al procesamiento de las mismas. La demora o delay total es proporcional al tamaño de las tramas: cuanto mayor es la trama, mayor será la demora.
ü  Cut-Through: Los Switches Cut-Through fueron diseñados para reducir esta latencia. Esos switches minimizan el delay leyendo sólo los 6 primeros bytes de datos de la trama, que contiene la dirección de destino MAC, e inmediatamente la encaminan.El problema de este tipo de switch es que no detecta tramas corruptas causadas por colisiones (conocidos como runts), ni errores de CRC. Cuanto mayor sea el número de colisiones en la red, mayor será el ancho de banda que consume al encaminar tramas corruptas.Existe un segundo tipo de switch cut-through, los denominados fragment free, fue proyectado para eliminar este problema. El switch siempre lee los primeros 64 bytes de cada trama, asegurando que tenga por lo menos el tamaño mínimo, y evitando el encaminamiento de runts por la red.
ü  Adaptative Cut-Through: Los switches que procesan tramas en el modo adaptativo soportan tanto store-and-forward como cut-through. Cualquiera de los modos puede ser activado por el administrador de la red, o el switch puede ser lo bastante inteligente como para escoger entre los dos métodos, basado en el número de tramas con error que pasan por los puertos.Cuando el número de tramas corruptas alcanza un cierto nivel, el switch puede cambiar del modo cut-through a store-and-forward, volviendo al modo anterior cuando la red se normalice.Los switches cut-through son más utilizados en pequeños grupos de trabajo y pequeños departamentos. En esas aplicaciones es necesario un buen volumen de trabajo o throughput, ya que los errores potenciales de red quedan en el nivel del segmento, sin impactar la red corporativa.Los switches store-and-forward son utilizados en redes corporativas, donde es necesario un control de errores.
ü  Atendiendo a la forma de segmentación de las sub-redes:
ü  Switches de Capa 2 o Layer 2 Switches: Son los switches tradicionales, que funcionan como puentes multi-puertos. Su principal finalidad es dividir una LAN en múltiples dominios de colisión, o en los casos de las redes en anillo, segmentar la LAN en diversos anillos. Basan su decisión de envío en la dirección MAC destino que contiene cada trama.Los switches de nivel 2 posibilitan múltiples transmisiones simultáneas sin interferir en otras sub-redes. Los switches de capa 2 no consiguen, sin embargo, filtrar difusiones o broadcasts, multicasts (en el caso en que más de una sub-red contenga las estaciones pertenecientes al grupo multicast de destino), ni tramas cuyo destino aún no haya sido incluido en la tabla de direccionamiento.
ü  Switches de Capa 3 o Layer 3 Switches: Son los switches que, además de las funciones tradicionales de la capa 2, incorporan algunas funciones de enrutamiento o routing, como por ejemplo la determinación del camino basado en informaciones de capa de red (capa 3 del modelo OSI), validación de la integridad del cableado de la capa 3 por checksum y soporte a los protocolos de routing tradicionales (RIP, OSPF, etc). Los switches de capa 3 soportan también la definición de redes virtuales (VLAN's), y según modelos posibilitan la comunicación entre las diversas VLAN's sin la necesidad de utilizar un router externo.Por permitir la unión de segmentos de diferentes dominios de difusión o broadcast, los switches de capa 3 son particularmente recomendados para la segmentación de redes LAN muy grandes, donde la simple utilización de switches de capa 2 provocaría una pérdida de rendimiento y eficiencia de la LAN, debido a la cantidad excesiva de broadcasts.Se puede afirmar que la implementación típica de un switch de capa 3 es más escalable que un router, pues éste último utiliza las técnicas de enrutamiento a nivel 3 y encaminamiento a nivel 2 como complementos, mientras que los switches sobreponen la función de enrutamiento encima del encaminamiento, aplicando el primero donde sea necesario.
Dentro de los Switches Capa 3 tenemos:
ü  Paquete-por-Paquete (Packet by Packet):Básicamente, un switch Packet By Packet es un caso especial de switch Store-and-Forward pues, al igual que éstos, almacena y examina el paquete, calculando el CRC y decodificando la cabecera de la capa de red para definir su ruta a través del protocolo de enrutamiento adoptado.
ü  Layer-3 Cut-through:Un switch Layer 3 Cut-Through (no confundir con switch Cut-Through), examina los primeros campos, determina la dirección de destino (a través de la información de los headers o cabeceras de capa 2 y 3) y, a partir de ese instante, establece una conexión punto a punto (a nivel 2) para conseguir una alta tasa de transferencia de paquetes.Cada fabricante tiene su diseño propio para posibilitar la identificación correcta de los flujos de datos. Como ejemplo, tenemos el "IP Switching" de Ipsilon, el "SecureFast Virtual Networking de Cabletron", el "Fast IP" de 3Com.El único proyecto adoptado como un estándar de hecho, implementado por diversos fabricantes, es el MPOA (Multi Protocol Over ATM). El MPOA, en desmedro de su comprobada eficiencia, es complejo y bastante caro de implementar, y limitado en cuanto a backbones ATM.Además, un switch Layer 3 Cut-Through, a partir del momento en que la conexión punto a punto es establecida, podrá funcionar en el modo "Store-and-Forward" o "Cut-Through"
ü  Switches de Capa 4 o Layer 4 Switches:Están en el mercado hace poco tiempo y hay una controversia en relación con la adecuada clasificación de estos equipos. Muchas veces son llamados de Layer 3+ (Layer 3 Plus).Básicamente, incorporan a las funcionalidades de un switch de capa 3 la habilidad de implementar la políticas y filtros a partir de informaciones de capa 4 o superiores, como puertos TCP/UDP, SNMP, FTP, etc.
o   ROUTER
En un entorno que está formado por diferentes segmentos de red con distintos protocolos y arquitecturas, el bridge podría resultar inadecuado para asegurar una comunicación rápida entre todos los segmentos. Una red de esta complejidad necesita un dispositivo que no sólo conozca las direcciones de cada segmento, sino también, que sea capaz de determinar el camino más rápido para el envío de datos y filtrado del tráfico de difusión en el segmento local. Este dispositivo se conoce como «router».
Los routers trabajan en el nivel de red del modelo de referencia OSI. Esto significa que pueden conmutar y encaminar paquetes a través de múltiples redes. Realizan esto intercambiando información específica de protocolos entre las diferentes redes. Los routers leen en el paquete la información de direccionamiento de las redes complejas teniendo acceso a información adicional, puesto que trabajan a un nivel superior del modelo OSI en comparación con los bridges.
Los routers pueden proporcionar las siguientes funciones de un bridge: Filtrado y aislamiento del tráfico. Conexión de segmentos de red.
Los routers tienen acceso a más información en los paquetes de la que tiene los bridges y utilizan esta información para mejorar la entrega de los paquetes. Los routers se utilizan en redes complejas puesto que proporcionan una mejor gestión del tráfico. Los routers pueden compartir con otro router el estado y la información de encaminamiento y utilizar esta información para evitar conexiones lentas o incorrectas.
¿Cómo funcionan los routers?
Los routers mantienen sus propias tablas de encaminamiento, normalmente constituidas por direcciones de red; también se pueden incluir las direcciones de los hosts si la arquitectura de red lo requiere. Para determinar la dirección de destino de los datos de llegada, las tablas de encaminamiento incluyen:
Todas las direcciones de red conocidas. Instrucciones para la conexión con otras redes. Los posibles caminos entre los routers. El coste de enviar los datos a través de estos caminos.
Un router utiliza sus tablas de encaminamiento de datos para seleccionar la mejor ruta en función de los caminos disponibles y del coste.
La tabla de encaminamiento que mantiene un bridge contienen las direcciones del subnivel MAC para cada nodo, mientras que la tabla de encaminamiento que mantiene un router contiene números de red. Aunque los fabricantes de ambos tipos de equipamiento han seleccionado utilizar el término «tabla de encaminamiento», tienen diferente significado para cada uno de los dispositivos.
Los routers requieren direcciones específicas. Entienden sólo los números de red que les permiten comunicarse con otros routers y direcciones NIC locales. Los routers no conversan con equipos remotos.
Cuando los routers reciben paquetes destinados a una red remota, los envían al router que gestiona la red de destino. En algunas ocasiones esto constituye una ventaja porque significa que los routers pueden:
Segmentar grandes redes en otras más pequeñas.
Actuar como barrera de seguridad entre los diferentes segmentos. Prohibir las «tormentas» de difusión, puestos que no se envían estos mensajes de difusión.
Los routers son más lentos que los bridges, puesto que deben realizar funciones complejas sobre cada paquete. Cuando se pasan los paquetes de router a router, se separan las direcciones de origen y de destino del nivel de enlace de datos y, a continuación, se vuelven a generar. Esto activa a un router para encaminar desde una red Ethernet TCP/IP a un servidor en una red Token Ring TCP/IP.
Dado que los routers sólo leen paquetes direccionados de red, no permiten pasar datos corruptos a la red. Por tanto, al no permitir pasar datos corruptos ni tormentas de difusión de datos, los routers implican muy poca tensión en las redes.
Los routers no ven la dirección del nodo de destino, sólo tienen control de las direcciones de red. Los routers pasarán información sólo si conocen la dirección de la red. Esta capacidad de controlar el paso de datos a través del router reduce la cantidad de tráfico entre las redes y permite a los routers utilizar estos enlaces de forma más eficiente que los bridges.
La utilización de un esquema de direccionamiento basado en router permite a los administradores poder dividir una gran red en muchas redes separadas, y dado que los routers no pasan e incluso controlan cada paquete, actúan como una barrera de seguridad entre los segmentos de la red. Esto permite reducir bastante la cantidad de tráfico en la red y el tiempo de espera por parte de los usuarios.

o   PANELES DE PARCHEO

Patch-Panels: Son estructuras metálicas con placas de circuitos que permiten interconexión entre equipos. Un Patch-Panel posee una determinada            cantidad de puertos (RJ-45 End-Plug), donde cada puerto se asocia a una placa de circuito, la cual a su vez se propaga en pequeños conectores de cerdas (o dientes - mencionados con anterioridad). En estos conectores esdonde se ponchan las cerdas de los cables provenientes de los cajetines u otros Patch-Panels. La idea del Patch-Panel además de seguir estándares de redes, es la de estructurar o manejar los cables que interconectan equipos en una red, de una mejor manera. Para ponchar las cerdas de un cable Twisted Pair en el Patch-Panel se usa una ponchadora al igual que en los cajetines. El estándar para el uso de Patch-Panels, Cajetines y Cables es el siguiente:

Se conecta un cable o RJ-45 (Plug-End) de una maquina al puerto (Jack-End) del cajetin. Se debe tener cuidado con esto ya que el cable puede ser cruzado o no. De la parte dentada interna del cajetin se conectan las cerdas de otro cable hasta la parte dentada del Patch-Panel. El cable se pasa a través de las canaletas previamente colocadas. Del puerto externo del patch-panel (Jack-End) se coloca un cable corto hacia el hub o el switch.

o   RACKS DE COMUNICACIÓN
Un rack es un bastidor destinado a alojar equipamiento electrónico, informático y de comunicaciones. Sus medidas están normalizadas para que sea compatible con equipamiento de cualquier fabricante.
También son llamados bastidores, cabinets o armarios.
Los racks son un simple armazón metálico con un ancho interno normalizado de 19 pulgadas, mientras que el alto y el fondo son variables para adaptarse a las distintas necesidades.
Los racks son muy útiles en un centro de proceso de datos, donde el espacio es escaso y se necesita alojar un gran número de dispositivos. Estos dispositivos suelen ser:
·         Servidores cuya carcasa ha sido diseñada para adaptarse al bastidor. Existen servidores de 1U, 2U y 4U, y recientemente, se han popularizado los servidores blade que permiten compactar más compartiendo fuentes de alimentación y cableado.

     B) DIFERENCIACIÓN DE  ESTÁNDARES DE ACCESO AL MEDIO EN REDES
·         ETHERNET O IEEE 802.3
La primera versión fue un intento de estandarizar ethernet aunque hubo un campo de la cabecera que se definió de forma diferente, posteriormente ha habido ampliaciones sucesivas al estándar que cubrieron las ampliaciones de velocidad (Fast Ethernet, Gigabit Ethernet y el de 10 Gigabits), redes virtuales, hubs, conmutadores y distintos tipos de medios, tanto de fibra óptica como de cables de cobre (tanto par trenzado como coaxial).
Los estándares de este grupo no reflejan necesariamente lo que se usa en la práctica, aunque a diferencia de otros grupos este suele estar cerca de la realidad.
Versiones de 802.3

Estándar Ethernet
Fecha
Descripción
Ethernet experimental
1972 (patentado en 1978)
2,85 Mbit/s sobre cable coaxial en topología de bus.
Ethernet II (DIX v2.0)
1982
10 Mbit/s sobre coaxial fino (thinnet) - La trama tiene un campo de tipo de paquete. El protocolo IP usa este formato de trama sobre cualquier medio.
IEEE 802.3
1983
10BASE5 10 Mbit/s sobre coaxial grueso (thicknet). Longitud máxima del segmento 500 metros - Igual que DIX salvo que el campo de Tipo se substituye por la longitud.
802.3a
1985
10BASE2 10 Mbit/s sobre coaxial fino (thinnet o cheapernet). Longitud máxima del segmento 185 metros
802.3b
1985
10BROAD36
802.3c
1985
Especificación de repetidores de 10 Mbit/s
802.3d
1987
FOIRL (Fiber-Optic Inter-Repeater Link) enlace de fibra óptica entre repetidores.
802.3e
1987
1BASE5 o StarLAN
802.3i
1990
10BASE-T 10 Mbit/s sobre par trenzado no blindado (UTP). Longitud máxima del segmento 100 metros.
802.3j
1993
10BASE-F 10 Mbit/s sobre fibra óptica. Longitud máxima del segmento 1000 metros.
1995
100BASE-TX, 100BASE-T4, 100BASE-FX Fast Ethernet a 100 Mbit/s con auto-negociación de velocidad.
802.3x
1997
Full Duplex (Transmisión y recepción simultáneos) y control de flujo.
802.3y
1998
100BASE-T2 100 Mbit/s sobre par trenzado no blindado(UTP). Longitud máxima del segmento 100 metros
802.3z
1998
1000BASE-X Ethernet de 1 Gbit/s sobre fibra óptica.
802.3ab
1999
1000BASE-T Ethernet de 1 Gbit/s sobre par trenzado no blindado
802.3ac
1998
Extensión de la trama máxima a 1522 bytes (para permitir las "Q-tag") Las Q-tag incluyen información para 802.1Q VLAN y manejan prioridades según el estandar 802.1p.
802.3ad
2000
Agregación de enlaces paralelos.
802.3ae
2003
Ethernet a 10 Gbit/s ; 10GBASE-SR, 10GBASE-LR
2003
Alimentación sobre Ethernet (PoE).
802.3ah
2004
Ethernet en la última milla.
802.3ak
2004
10GBASE-CX4 Ethernet a 10 Gbit/s sobre cable bi-axial.
802.3an
2006
10GBASE-T Ethernet a 10 Gbit/s sobre par trenzado no blindado (UTP)
802.3ap
en proceso (draft)
Ethernet de 1 y 10 Gbit/s sobre circuito impreso.
802.3aq
en proceso (draft)
10GBASE-LRM Ethernet a 10 Gbit/s sobre fibra óptica multimodo.
802.3ar
en proceso (draft)
Gestión de Congestión
802.3as
en proceso (draft)
Extensión de la trama


·         TOKEN BUS O IEEE 802.4
Token Bus es un protocolo para redes de área local con similitudes a Token Ring, pero en vez de estar destinado a topologías en anillo está diseñado para topologías en bus.
Es un protocolo de acceso al medio en el cual los nodos están conectados a un bus o canal para comunicarse con el resto. En todo momento hay un testigo (token) que los nodos de la red se van pasando, y únicamente el nodo que tiene el testigo tiene permiso para transmitir. El bus principal consiste en un cable coaxial.
Token bus está definido en el estándar IEEE 802.4. Se publicó en 1980 por el comité 802 dentro del cual crearon 3 subcomites para 3 propuestas que impulsaban distintas empresas. El protocolo ARCNET es similar, pero no sigue este estándar. Token Bus se utiliza principalmente en aplicaciones industriales. Fue muy apoyado por GM. Actualmente en desuso por la popularización de Ethernet.

CARACTERÍSTICAS
  • Tiene una topografía en bus (configuración en bus física), pero una topología en anillo. Las estaciones están conectadas a un bus común pero funcionan como si estuvieran conectadas en anillo.
  • Todas las estaciones o nodos conocen la identidad de los nodos siguiente y anterior. El último nodo conoce la dirección del primero y de su anterior, así como el primer nodo conoce la dirección del último y de su sucesor.
  • La estación que tiene el testigo o token tiene el control sobre el medio y puede transmitir información a otro nodo.
  • Cada estación tiene un receptor y un transmisor que hace las funciones de repetidor de la señal para la siguiente estación del anillo lógico.
  • No existen colisiones.
  • Todas las estaciones tienen igual probabilidad de envio.
  • Es un protocolo eficaz en la producción en serie.

*   TOKEN RING  O IEEE 802.5

Token Ring es una arquitectura de red desarrollada por IBM en los años 1970 con topología lógica en anillo y técnica de acceso de paso de testigo. Token Ring se recoge en el estándar IEEE 802.5. En desuso por la popularización de Ethernet; actualmente no es empleada en diseños de redes.
EL ESTÁNDAR IEEE 802.5
El IEEE 802.5 es un estándar por el Institute of Electrical and Electronics Engineers (IEEE), y define una red de área local LAN en configuración de anillo (Ring), con método de paso de testigo (Token) como control de acceso al medio. La velocidad de su estándar es de 4 ó 16 Mbps.
El diseño de una red de Token Ring fue atribuido a E. E. Newhall en el año 1969. International Business Machines (IBM) publicó por primera vez su topología de Token Ring en marzo de [1982], cuando esta compañía presentó los papeles para el proyecto 802 del IEEE. IBM anunció un producto Token Ring en 1984, y en 1985 éste llegó a ser un estándar de ANSI/IEEE.
Es casi idéntica y totalmente compatible con la red del token ring de IBM. De hecho, la especificación de IEEE 802.5 fue modelada después del token ring, y continúa sombreando el desarrollo del mismo. Además, el token ring de la IBM especifica una estrella, con todas las estaciones del extremo unidas a un dispositivo al que se le llama "unidad del acceso multiestación" (MSAU). En contraste, IEEE 802.5 no especifica una topología, aunque virtualmente todo el IEEE 802.5 puesto en práctica se basa en una estrella, y tampoco especifica un tipo de medios, mientras que las redes del token ring de la IBM utilizan el tamaño del campo de información de encaminamiento.
El IEEE 802.5 soporta dos tipos de frames básicos: tokens y frames de comandos y de datos. El Token es una trama que circula por el anillo en su único sentido de circulación. Cuando una estación desea transmitir y el Token pasa por ella, lo toma. Éste sólo puede permanecer en su poder un tiempo determinado (10 ms). Tienen una longitud de 3 bytes y consiste en un delimitador de inicio, un byte de control de acceso y un delimitador de fin. En cuanto a los Frames de comandos y de datos pueden variar en tamaño, dependiendo del tamaño del campo de información. Los frames de datos tienen información para protocolos mayores, mientras que los frames de comandos contienen información de control.
CARACTERÍSTICAS PRINCIPALES
  • Utiliza una topología lógica en anillo, aunque por medio de una unidad de acceso de estación múltiple (MSAU), la red puede verse como si fuera una estrella. Tiene topologia física estrella y topología lógica en anillo.
  • Utiliza cable especial apantallado, aunque el cableado también puede ser par trenzado.
  • La longitud total de la red no puede superar los 366 metros.
  • La distancia entre una computadora y el MAU no puede ser mayor que 100 metros.
  • A cada MAU se pueden conectar ocho computadoras.
  • Estas redes alcanzan una velocidad máxima de transmisión que oscila entre los 4 y los 16 Mbps.
  • Posteriormente el High Speed Token Ring (HSTR) elevó la velocidad a 110 Mbps pero la mayoría de redes no la soportan.

·         WLAN O IEEE 802.11/A/B/G/N

EL ESTÁNDAR IEEE 802.11
Define el uso de los dos niveles inferiores de la arquitectura OSI (capas física y de enlace de datos), especificando sus normas de funcionamiento en una WLAN. Los protocolos de la rama 802.x definen la tecnología de redes de área local y redes de área metropolitana.
Wifi N ó 802.11n: En la actualidad la mayoría de productos son de la especificación b o g , sin embargo ya se ha ratificado el estándar 802.11n que sube el límite teórico hasta los 600 Mbps. Actualmente ya existen varios productos que cumplen el estándar N con un máximo de 300 Mbps (80-100 estables).
El estándar 802.11n hace uso simultáneo de ambas bandas, 2,4 Ghz y 5,4 Ghz. Las redes que trabajan bajo los estándares 802.11b y 802.11g, tras la reciente ratificación del estándar, se empiezan a fabricar de forma masiva y es objeto de promociones de los operadores ADSL, de forma que la masificación de la citada tecnología parece estar en camino. Todas las versiones de 802.11xx, aportan la ventaja de ser compatibles entre sí, de forma que el usuario no necesitará nada más que su adaptador wifi integrado, para poder conectarse a la red.
Sin duda esta es la principal ventaja que diferencia wifi de otras tecnologías propietarias, como LTE, UMTS y Wimax, las tres tecnologías mencionadas, únicamente están accesibles a los usuarios mediante la suscripción a los servicios de un operador que está autorizado para uso de espectro radioeléctrico, mediante concesión de ámbito nacional.
La mayor parte de los fabricantes ya incorpora a sus líneas de producción equipos wifi 802.11n, por este motivo la oferta ADSL, ya suele venir acompañada de wifi 802.11n, como novedad en el mercado de usuario doméstico

802.11A

En 1997 el IEEE (Instituto de Ingenieros Eléctricos y Electrónicos) crea el Estándar 802.11 con velocidades de transmisión de 2Mbps.
En 1999, el IEEE aprobó ambos estándares: el 802.11a y el 802.11b.

La revisión 802.11a fue ratificada en
1999. El estándar 802.11a utiliza el mismo juego de protocolos de base que el estándar original, opera en la banda de 5 Ghz y utiliza 52 subportadoras orthogonal frequency-division multiplexing (OFDM) con una velocidad máxima de 54 Mbit/s, lo que lo hace un estándar práctico para redes inalámbricas con velocidades reales de aproximadamente 20 Mbit/s. La velocidad de datos se reduce a 1000, 48, 36, 24, 18, 12, 9 o 6 Mbit/s en caso necesario. 802.11a tiene 12 canales sin solapa, 8 para red inalámbrica y 4 para conexiones punto a punto. No puede interoperar con equipos del estándar 802.11b, excepto si se dispone de equipos que implementen ambos estándares.
Dado que la banda de 2.4 Ghz tiene gran uso (pues es la misma banda usada por los teléfonos inalámbricos y los hornos de microondas, entre otros aparatos), el utilizar la banda de 5 GHz representa una ventaja del estándar 802.11a, dado que se presentan menos interferencias. Sin embargo, la utilización de esta banda también tiene sus desventajas, dado que restringe el uso de los equipos 802.11a a únicamente puntos en línea de vista, con lo que se hace necesario la instalación de un mayor número de puntos de acceso; Esto significa también que los equipos que trabajan con este estándar no pueden penetrar tan lejos como los del estándar 802.11b dado que sus ondas son más fácilmente absorbidas.

802.11B

La revisión 802.11b del estándar original fue ratificada en 1999. 802.11b tiene una velocidad máxima de transmisión de 11 Mbit/s y utiliza el mismo método de acceso definido en el estándar originalCSMA/CA. E802.11b Lance la fecha De Op. Sys. Frecuencia Tarifa de datos (Typ) Tarifa de datos (máximo) Gama (de interior) Octubre de 1999 2.4 gigahertz 4.5 Mbit/s 11 Mbit/s ~35 m
Artículo principal: IEEE 802.11b-1999 802.11b tiene un índice máximo de informaciones en bruto de 11 Mbit/s y utiliza el mismo método de acceso de los medios definido en el estándar original. los productos 802.11b aparecieron en el mercado a principios de 2000, puesto que 802.11b es una extensión directa de la técnica de la modulación definida en el estándar original. El aumento dramático en el rendimiento de procesamiento de 802.11b (comparado al estándar original) junto con reducciones de precio substanciales simultáneas condujo a la aceptación rápida de 802.11b como la tecnología definitiva del LAN de la radio.
los dispositivos 802.11b sufren interferencia de otros productos que funcionan en la venda de 2.4 gigahertz. Los dispositivos que funcionan en la gama de 2.4 gigahertz incluyen: hornos de microonda, dispositivos de Bluetooth, monitores del bebé y teléfonos sin cuerda.

802.11G
 Lance la fecha De Op. Sys. Frecuencia Tarifa de datos (Typ) Tarifa de datos (máximo) Gama (de interior) Junio de 2003 2.4 gigahertz 23 Mbit/s 54 Mbit/s ~35 m
Artículo principal: IEEE 802.11g-2003 En junio de 2003, un tercer estándar de la modulación fue ratificado: 802.11g. Esto trabaja en la venda de 2.4 gigahertz (como 802.11b) pero funciona en un índice máximo de informaciones en bruto de 54 Mbit/s, o el rendimiento de procesamiento neto de cerca de 19 Mbit/s. el hardware 802.11g es completamente al revés compatible con el hardware 802.11b.
El estándar entonces-propuesto 802.11g fue adoptado rápidamente por los consumidores que comenzaban en enero de 2003, bien antes de la ratificación, debido al deseo para velocidades más altas, y las reducciones en costes de la fabricación. Por el verano 2003, la mayoría de los productos dual-band 802.11a/b se convirtieron en dual-band/tri-modo, a de soporte y b/g en un solo móvil tarjeta del adaptador o punto de acceso. Los detalles de hacer b y el pozo del trabajo de g juntos ocuparon mucho del proceso técnico persistente; en una red 802.11g, sin embargo, la actividad de un participante 802.11b reducirá la velocidad de la red total 802.11g.
Como 802.11b, los dispositivos 802.11g sufren interferencia de otros productos que funcionan en la venda de 2.4 gigahertz. Los dispositivos que funcionan en la gama de 2.4 gigahertz incluyen: hornos de microonda, dispositivos de Bluetooth, monitores del bebé y teléfonos sin cuerda.

802.11-2007 En 2003, el grupo de tarea TGma fue autorizado “rueda para arriba” muchas de las enmiendas a la versión 1999 del estándar 802.11. REVma o 802.11ma, mientras que fue llamado, creó un solo documento que combinó 8 enmiendas (802.11a,b,d,e,g,h,i,j) con el estándar de la base. Sobre la aprobación encendido 8 de marzo, 2007, 802.11REVma fue retitulado a la corriente estándar IEEE 802.11-2007.[5] Éste es el solo documento más moderno 802.11 disponible que contiene cambios acumulativos de grupos de tarea múltiples de la secundario-letra.

802.11n Artículo principal: IEEE 802.11n Lance la fecha De Op. Sys. Frecuencia Tarifa de datos (Typ) Tarifa de datos (máximo) Gama (de interior) Junio de 2009 (est.) 5 gigahertz y/o 2.4 gigahertz 74 Mbit/s 300 Mbit/s (2 corrientes) ~70 m
802.11n es una enmienda propuesta que mejora sobre los 802.11 estándares anteriores mediante la adición multiple-output multiple-input (MIMO) y muchas otras más nuevas características. Aunque hay ya muchos productos en el basado en el mercado en el bosquejo 2.0 de esta oferta, no se espera que el workgroup de TGn concluya la enmienda hasta el noviembre de 2008.[3]

Canales y compatibilidad internacional Vea también: Información técnica Wi-Fi 802.11 divide cada uno de las vendas descritas antes en los canales, análogo a cómo se dividen la radio y las vendas de la difusión de TV pero con mayor anchura del canal y se traslapa. Por ejemplo la venda de 2.4000-2.4835 gigahertz se divide en 13 canales cada uno de anchura 22 megaciclos pero se espacia solamente 5 megaciclos de separado, con el canal 1 centrado en 2412 megaciclos y 13 en 2472, a los cuales Japón agrega un 14to canal 12 megaciclos sobre el canal 13.
La disponibilidad de canales es regulada por el país, obligado en parte por cómo cada país asigna el espectro de radio a los varios servicios. En los permisos extremos de un Japón el uso de los 14 canales (con la exclusión de 802.11g/n del canal 14), mientras que en la otra España no prohibida solamente los canales 10 y 11 (todos los 14 canales se han permitido más adelante[6] ), a que Francia agrega 12 y 13. La mayoría de los otros países europeos son casi tan liberales como Japón, rechazando solamente el canal 14, mientras que Norteamérica y algunos países de americano central y del sur más futuros rechazan 12 y 13. Para más detalles en este asunto, vea Lista de los canales de WLAN.
Además de especificar la frecuencia de centro de cada canal, 802.11 también especifica (en la cláusula 17) a máscara espectral definir la distribución de la energía permitida a través de cada canal. La máscara requiere que sea la señal atenuado por por lo menos 30 DB de su energía máxima en el ± 11 megaciclos de la frecuencia de centro, el sentido en el cual los canales tienen con eficacia 22 megaciclos de ancho. Una consecuencia es que las estaciones pueden utilizar solamente cada cuarto o quinto canal sin traslapo, típicamente 1, 6 y 11 en las Américas, 1-13 en Europa, etc. Otro es que los canales 1-13 requieren con eficacia la venda 2401-2483 megaciclos, las asignaciones reales que son por ejemplo 2400-2483.5 en el Reino Unido, 2402-2483.5 en los E.E.U.U., etc.
Puesto que la máscara espectral define solamente restricciones de la salida de energía hasta ± 22 megaciclos de la frecuencia de centro que se atenuará por DB 50, se asume a menudo que la energía del canal amplía no más futuro que estos límites. Está más correcto decir que, dado la separación entre los canales 1, 6, y 11, la señal en cualquier canal se debe atenuar suficientemente para interferir como mínimo con un transmisor en cualquier otro canal. Debido a problema cercano-lejos un transmisor puede afectar un receptor en un canal “sin traslapo”, pero solamente si está cerca del receptor de la víctima (dentro de un metro) o del funcionamiento sobre niveles permitidos de la energía.
Aunque la declaración que los canales 1, 6, y 11 son “sin traslapo” se limita al espaciamiento o a la densidad del producto, la pauta 1-6-11 tiene mérito. Si los transmisores son más cercanos juntos que 1, 6, y 11 (por ejemplo, 1, 4, 7, y 10), el traslapo entre los canales puede causar la degradación inaceptable de la calidad y del rendimiento de procesamiento de la señal.[ l estándar 802.11b funciona en la banda de 2.4 GHz. Debido al espacio ocupado por la codificación del protocolo CSMA/CA, en la práctica, la velocidad máxima de transmisión con este estándar es de aproximadamente 5.9 Mbit/s sobre TCP y 7.1 Mbit/s sobre UDP.
Aunque también utiliza una técnica de ensanchado de espectro basada en DSSS, en realidad la extensión 802.11b introduce CCK (Complementary Code Keying) para llegar a velocidades de 5,5 y 11 Mbps (tasa física de bit). El estándar también admite el uso de PBCC (Packet Binary Convolutional Coding) como opcional. Los dispositivos 802.11b deben mantener la compatibilidad con el anterior equipamiento DSSS especificado a la norma original IEEE 802.11 con velocidades de 1 y 2 Mbps.

802.11G

En junio de 2003, se ratificó un tercer estándar de modulación: 802.11g. Que es la evolución del estándar 802.11b, Este utiliza la banda de 2.4 Ghz (al igual que el estándar 802.11b) pero opera a una velocidad teórica máxima de 54 Mbit/s, que en promedio es de 22.0 Mbit/s de velocidad real de transferencia, similar a la del estándar 802.11a. Es compatible con el estándar b y utiliza las mismas frecuencias. Buena parte del proceso de diseño del estándar lo tomó el hacer compatibles los dos estándares. Sin embargo, en redes bajo el estándar g la presencia de nodos bajo el estándar b reduce significativamente la velocidad de transmisión.
Los equipos que trabajan bajo el estándar 802.11g llegaron al mercado muy rápidamente, incluso antes de su ratificación que fue dada aprox. el 20 de junio del 2003. Esto se debió en parte a que para construir equipos bajo este nuevo estándar se podían adaptar los ya diseñados para el estándar b.
Actualmente se venden equipos con esta especificación, con potencias de hasta medio vatio, que permite hacer comunicaciones de hasta 50 km con antenas parabólicas o equipos de radio apropiados.
Interacción de 802.11g y 802.11b.
802.11g tiene la ventaja de poder coexistir con los estándares 802.11a y 802.11b, esto debido a que puede operar con las Tecnologías RF DSSS y OFDM. Sin embargo, si se utiliza para implementar usuarios que trabajen con el estándar 802.11b, el rendimiento de la celda inalámbrica se verá afectado por ellos, permitiendo solo una velocidad de transmisión de 22 Mbps. Esta degradación se debe a que los clientes 802.11b no comprenden OFDM.
Suponiendo que se tiene un Access Point que trabaja con 802.11g, y actualmente se encuentran conectados un cliente con 802.11b y otro 802.11g, como el cliente 802.11b no comprende los mecanismos de envío de OFDM, el cual es utilizados por 802.11g, se presentarán colisiones, lo cual hará que la información sea reenviada, degradando aún más nuestro ancho de banda.
Suponiendo que el cliente 802.11b no se encuentra conectado actualmente, el Access Point envía tramas que brindan información acerca del Access Point y la celda inalámbrica. Sin el cliente 802.11b, en las tramas se verían la siguiente información:
NON_ERP present: no
Use Protection: no
ERP (Extended Rate Physical), esto hace referencia a dispositivos que utilizan tasas de transferencia de datos extendidos, en otras palabras, NON_ERP hace referencia a 802.11b. Si fueran ERP, soportarían las altas tasas de transferencia que soportan 802.11g.
Cuando un cliente 802.11b se asocia con el AP (Access Point), éste último alerta al resto de la red acerca de la presencia de un cliente NON_ERP. Cambiando sus tramas de la siguiente forma:
NON_ERP present: yes
Use Protection: yes
Ahora que la celda inalámbrica sabe acerca del cliente 802.11b, la forma en la que se envía la información dentro de la celda cambia. Ahora cuando un cliente 802.11g quiere enviar una trama, debe advertir primero al cliente 802.11b enviándole un mensaje RTS (Request to Send) a una velocidad de 802.11b para que el cliente 802.11b pueda comprenderlo. El mensaje RTS es enviado en forma de unicast. El receptor 802.11b responde con un mensaje CTS (Clear to Send).
Ahora que el canal está libre para enviar, el cliente 802.11g realiza el envío de su información a velocidades según su estándar. El cliente 802.11b percibe la información enviada por el cliente 802.11g como ruido.
La intervención de un cliente 802.11b en una red de tipo 802.11g, no se limita solamente a la celda del Access Point en la que se encuentra conectado, si se encuentra trabajando en un ambiente con múltiples AP en Roaming, los AP en los que no se encuentra conectado el cliente 802.11b se transmitirán entre sí tramas con la siguiente infromación:
NON_ERP present: no
Use Protection: yes
La trama anterior les dice que hay un cliente NON_ERP conectado en uno de los AP, sin embargo, al tenerse habilitado Roaming, es posible que éste cliente 802.11b se conecte en alguno de ellos en cualquier momento, por lo cual deben utilizar los mecanismo de seguridad en toda la red inalámbrica, degradando de esta forma el rendimiento de toda la celda. Es por esto que los clientes deben conectarse preferentemente utilizando el estándar 802.11g. Wi-Fi (802.11b / g).
IEEE 802.11N
es una propuesta de modificación al estándar IEEE 802.11-2007 para mejorar significativamente el desempeño de la red más allá de los estándares anteriores, tales como 802.11b y 802.11g, con un incremento significativo en la velocidad máxima de transmisión de 54 Mbps a un máximo de 600 Mbps. Actualmente la capa física soporta una velocidad de 300Mbps, con el uso de dos flujos espaciales en un canal de 40 MHz. Dependiendo del entorno, esto puede transformarse a un desempeño visto por el usuario de 100Mbps.[1]
El estándar 802.11n fue ratificado por la organización IEEE el 11 de septiembre de 2009
En enero de 2004, el IEEE anunció la formación de un grupo de trabajo 802.11 (Tgn) para desarrollar una nueva revisión del estándar 802.11. La velocidad real de transmisión podría llegar a los 600 Mbps (lo que significa que las velocidades teóricas de transmisión serían aún mayores), y debería ser hasta 10 veces más rápida que una red bajo los estándares 802.11a y 802.11g, y unas 40 veces más rápida que una red bajo el estándar 802.11b. También se espera que el alcance de operación de las redes sea mayor con este nuevo estándar gracias a la tecnología MIMO Multiple Input – Multiple Output, que permite utilizar varios canales a la vez para enviar y recibir datos gracias a la incorporación de varias antenas (3). Existen también otras propuestas alternativas que podrán ser consideradas. El estándar ya está redactado, y se viene implantando desde 2008. A principios de 2007 se aprobó el segundo boceto del estándar. Anteriormente ya había dispositivos adelantados al protocolo y que ofrecían de forma no oficial este estándar (con la promesa de actualizaciones para cumplir el estándar cuando el definitivo estuviera implantado). Ha sufrido una serie de retrasos y el último lo lleva hasta noviembre de 2009. Habiéndose aprobado en enero de 2009 el proyecto 7.0 y que va por buen camino para cumplir las fechas señaladas.[1] A diferencia de las otras versiones de Wi-Fi, 802.11n puede trabajar en dos bandas de frecuencias: 2,4 GHz (la que emplean 802.11b y 802.11g) y 5 GHz (la que usa 802.11a). Gracias a ello, 802.11n es compatible con dispositivos basados en todas las ediciones anteriores de Wi-Fi. Además, es útil que trabaje en la banda de 5 GHz, ya que está menos congestionada y en 802.11n permite alcanzar un mayor rendimiento.
El estándar 802.11n fue ratificado por la organización IEEE el 11 de septiembre de 2009 con una velocidad de 600 Mbps en capa física


No hay comentarios:

Publicar un comentario